
International Journal of Theoretical Physics, Vol. 38, No. 6, 1999

Gravitational and Electroweak Unification

Dave Pandres, Jr.1
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Einstein suggested that a unified field theory be constructed by replacing the
diffeomorphism s (the coordinate transformations of general relativity) with some
larger group. We have constructed a theory that unifies the gravitational and
electroweak fields by replacing the diffeomorphism s with the largest group of
coordinate transformations under which conservation laws are covariant
statements. This replacement leads to a theory with field equations which imply
the validity of the Einstein equations of general relativity, with a stress-energy
tensor that is just what one expects for the electroweak field and associated
currents. The electroweak field appears as a consequence of the field equations
(rather than as a ª compensating fieldº introduced to secure gauge invariance).
There is no need for symmetry breaking to accommodate mass, because the U(1)
3 SU(2) gauge symmetry is approximate from the outset. The gravitational field
is described by the space-time metric, as in general relativity. The electroweak
field is described by the ª mixed symmetryº part of the Ricci rotation coefficients.
The gauge symmetry-breaking quantity is a vector formed by contracting the Levi-
Civita symbol with the totally antisymmetric part of the Ricci rotation coefficients.

1. INTRODUCTION

In his autographical notes, Einstein (1949) suggested that the construc-
tion of a unified field theory ª would be most beautiful, if one were to succeed

in expanding the group once more, analogous to the step which led from

special relativity to general relativity.º This suggestion was in accord with

the prophetic remark by Dirac (1930) that ª Further progress lies in the

direction of making our equations invariant under wider and still wider
transformations.º For several decades, we have been engaged in a program

(Pandres, 1962, 1981, 1984a, b, 1995, 1998) in which we have pursued

Einstein’ s suggestion that the diffeomorphisms (the covariance group for

general relativity) somehow be extended to a larger group. This program has
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now led to a theory which unifies the gravitational field with a field that

appears to describe the electroweak field. There is reason to believe that the

quantized theory may be finite or renormalizable, and free of anomalies. For
the purpose of optimizing readability, we devote this Introduction to a brief

overview, without proofs, of the main results from prior papers and of several

new results. In subsequent sections, we present detailed developments with

proofs of these results. We make minor changes in notation and terminology

to enhance clarity.

A diffeomorphism from space-time coordinates x a to space-time coordi-
nates x a Ä satisfies the commutation condition

[ - m , - n ]x a Ä 5 0 (1)

where [ - m , - n ] 5 - m - n 2 - n - m , and - m denotes partial differentiation with

respect to x m . (Partial differentiation is denoted also by a comma, e.g.,

- m x a Ä 5 x a Ä
, m ).

Initially, we merely suggested (Pandres, 1962) that equation (1) be
discarded. Our suggestion was motivated by an argument which is a general-

ization of the ª elevatorº argument that led Einstein from special relativity to

general relativity. Our argument provided reason to believe that discarding

equation (1) might lead to unification of the gravitational and electroweak

fields. In Section 2, we recall this argument, and present a new result that
makes the argument far more compelling. New results are also included in

Sections 4 and 5.

Subsequently, we suggested more specifically (Pandres, 1981) that equa-

tion (1) be replaced by the weaker condition

x n
, a Ä [ - m , - n ]x a Ä 5 0 (2)

Coordinate transformations that satisfy equation (2) are called conservative .

In Section 3.3, we recall that these transformations form a group, which we

call the conservation group because it is the largest group of coordinate

transformations under which conservation laws are covariant statements. It
contains the diffeomorphisms as a proper subgroup. Our theory is detemined

by the conservation groupÐ as general relativity is determined by the diffeo-

morphisms, as special relativity is determined by the Lorentz group, and as

Newtonian theory is determined by the Galilei group.

In Section 3.1, we recall in detail why commutation of partial derivatives

is not to be taken for granted. Briefly, the reason is that partial derivatives
are defined on a class of functionals on paths F( p) that contains the ordinary

functions F(x) as a subclass. The new coordinates x a Ä are such path-dependent

functionals. Thus, our theory is based, not on a Riemannian manifold, but

rather on a space in which paths (directed curve segments) are the most
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primitive entities that have invariant meaning. The properties of our path

space are recalled in Section 3.2.

Discussions of physical theories based on a Riemannian manifold often
use the index-free notation of differential forms. This notation exhibits the

geometry of a Riemannian manifold and the integrability conditions of equa-

tions defined on such a manifold in an especially transparent and suggestive

way. However, because our theory is based on a space which is more general

than a Riemannian manifold, we refrain from using the notation of forms.

[When we abandon equation (1), we abandon the PoincareÂlemma dd 5 0,
which expresses (see, e.g., De Felice and Clarke, 1990) the equality of mixed

partial derivatives with respect to space-time coordinates. Also, the forms

notation is most convenient for the discussion of vectors and of rank-two

antisymmetric tensors. It is less convenient for the discussion of rank-two

symmetric tensors, and actually obscures the discussion of rank-three tensors
(which may be decomposed into their symmetric, antisymmetric, and mixed-
symmetry parts). Such rank-three tensors will play a crucial role in the

development of our theory.] We use tensor notation and the summation

convention. Greek and Latin indices take the values 0, 1, 2, 3.

We also recall the geometry which is determined on path space by the

conservation group (as Riemannian geometry is determined on a manifold
by the diffeomorphisms). The structure of this geometry is expressed by a

tetrad of vectors hi
m . The tetrad is the primary quantity in our theory. The

metric is a secondary quantity, defined in terms of the tetrad by g m n 5
gijh

i
m h j

n , where gij 5 gij 5 diag( 2 1, 1, 1, 1). Latin (tetrad) indices are raised

and lowered using gij and gij, just as Greek (space-time) indices are raised

and lowered using g m n and g m n . We define a quantity

C m 5 h n
i (hi

m , n 2 hi
n , m ) (3)

which is a vector under the conservation group. We call this the curvature
vector because there exists a conservative coordinate transformation to a

coordinate system in which the tetrad is constant if and only if C m vanishes.

The quantity C m C m is invariant under the conservation group. In Section
4, we show that this invariant is an appropriate Lagrangian for gravitational

and electroweak unification. In Section 5, we consider the field equations

that flow from the variational principle

d # C m C m ! 2 g d 4x 5 0 (4)

where the 16 components of hi
m are varied independently. In Section 5.2, we

show that the set of tetrads hi
a which satisfy these field equations contains a
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nondenumerably infinite proper subset of path-independent tetrads, i.e., tet-

rads for which the condition

[ - m , - n ]hi
a 5 0 (5)

is satisfied. This condition is covariant under diffeomorphisms. Thus, any

hi
a in this subset appears in the guise of a tetrad defined on a Riemannian

manifold. In the most fundamental sense, however, our geometry remains
based not on a Riemannian manifold, but on path space.

The Einstein equations of general relativity may be interpreted in two

ways. One interpretation is as differential equations for the metric when the

stress-energy tensor is given. Alternatively, these equations may be looked

upon as a definition of the stress-energy tensor in terms of the metric. The
second interpretation has been stressed particularly by SchroÈ dinger (1960)

[ª I would rather you did not regard these equations as field equations, but

as a definition of Tik the matter tensorº ] and by Eddington (1924) [ª and we

must proceed by inquiring first what experimental properties the physical

tensor possesses, and then seeking a geometrical tensor which possesses these

propertiesº ]. It is the second interpretation that we adopt. In Section 5.3, we
show that our field equations restrict the metric in such a way as to imply

the validity of the Einstein equations with a stress-energy tensor that is just

what one expects for the electroweak field and associated currents. In Section

6, we discuss a different variational principle that yields different field equa-

tions which, however, imply the validity of Einstein equations that are identi-

cal in form to those of Section 5.3, but slightly different in interpretation.

2. MOTIVATION

In our first paper on field unification (Pandres, 1962) we began with

the special relativistic equation of motion for a free particle

d 2x i

ds2 5 0 (6)

where 2 ds2 5 gij dx idx j. We considered the image equation of this free-

particle equation under a transformation from coordinates x i to coordinates

x a , where [ - m , - n ]x i is not zero. We denote x i
, m by hi

m , so we see that the curl

f i
m n 5 hi

n , m 2 hi
n , m is not zero. From the chain rule for differentiation, we have

dx i/ds 5 hi
m dx m /ds. Upon differentiating this with respect to s, using the

chain rule, and multiplying by h a
i , we see that equation (6) may be written

d 2x a

ds2 1 h a
i hi

m , n
dx m

ds

dx n

ds
5 0 (7)
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We follow Eisenhart (1925) in defining Ricci rotation coefficients by

g i
m n 5 hi

m ; n 5 hi
m , n 2 hi

s G s
m n , where a semicolon denotes the usual covariant

differentiation with respect to the Christoffel symbol G a
m n . Multiplication by

h a
i gives h a

i hi
m , n 5 G a

m n 1 g a
m n , and upon using this in equation (7) we have

d 2x a

ds2 1 G a
m n

dx m

ds

dx n

ds
5 2 g a

m n
dx m

ds

dx n

ds
(8)

(Note: The relation g m n i 5 h j
m g j n a h a

i illustrates our general method for con-

verting between Greek and Latin indices.)

Now, the affine connection for spin in general relativity is expressed in
terms of the Ricci rotation coefficients by G m 5 1/8 g ij m ( g i g j 2 g j g i) 1 a m I,
where the g i are the Dirac matrices of special relativity, I is the identity

matrix, and a m is an arbitrary vector. It is well known that the spin connection

contains complete information about the electromagnetic field, and that one-

half of Maxwell’ s equations are identically satisfied on account of the exis-

tence of the spin connection. Furthermore, the manner in which the electro-
magnetic field enters the spin connection is in agreement with the principle

of minimal electromagnetic coupling. An understanding of the spinor calculus

in Riemann space, and the role played by the spin connection, was gained

through the work of many investigators during the decade after Dirac’ s

discovery of the relativistic theory of the electron; see, e.g., Bade and Jehle

(1953) for a general review. Many of these investigators recognized the
description of the electromagnetic field as part of the spin connection. An

especially lucid discussion of this was given by Loos (1963). The subsequent

unification of the electromagnetic and weak fields by Weinberg (1967) and

Salam (1968) leads us to expect that the spin connection might also contain

a description of the weak field.
We now recall (Pandres, 1995) evidence that the electroweak field is

described by M m n i, the ª mixed symmetryº part of g m n i under the permutation

group on three symbols. The totally symmetric part vanishes because g m n i is

antisymmetric in m and n . Thus, we have g m n i 5 M m n i 1 A m n i where A m n i is

the totally antisymmetric part. Clearly, A a
m n makes no contribution to the right

side of equation (8), so

d 2x a

ds2 1 G a
m n

dx m

ds

dx n

ds
5

dx m

ds
M m

a
iv

i (9)

where v i 5 dx i/ds is the (constant) first integral of equation (6). The totally
antisymmetric part of g m n i is

A m n i 5
1

3
( g m n i 1 g i m n 1 g n i m ) (10)
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Thus, the mixed symmetry part is M m n i 5 g m n i 2 A m n i, so, we have

M m n i 5
1

3
(2 g m n i 2 g i m n 2 g n i m ) (11)

The antisymmetry of g m n i in its first two indices may be used to obtain an

expression for M m n i in terms of fi m n . We have fi m n 5 hi n , m 2 hi m , n 5 hi n ; m 2
hi m ; n , so that fi m n 5 g i n m 2 g i m n . If we subtract from this the corresponding
expressions for f m n i and f n i m , we see that g m n i 5 1/2 ( fi m n 2 f m n i 2 f n i m ). By

using this and the corresponding expressions for g i m n and g n i m in equation

(11), we obtain

M m n i 5
1

3
(2fi m n 2 f m n i 2 f n i m ) (12)

which may be written

M m n i 5
1

3
(2 d n

i d a
m d s

n 2 hn
m d a

n h s
i 2 hn

mn h a
i d s

m ) fn a s (13)

where d a
m is the Kronecker delta. It is important to notice that equation (13)

may be rewritten in the form

M m n i 5
1

3
(2 d n

i d a
m d s

n 2 hn
m d a

n h s
i 2 hn

n h a
i d s

m )Fn a s (14)

where

Fi m n 5 fi m n 1 e0ij k h
j
m hk

n (15)

and enij k is the Levi-Civita symbol. In rewriting equation (13) as equation

(14), we used the easily verifiable fact that

(2 d n
i d a

m d s
n 2 hn

m d a
n h s

i 2 hn
n h a

i d s
m ) e0njk h j

a h k
s 5 0

Now, Fi m n is the usual field strength (see, e.g., Nakahara, 1990) for a

U(1) 3 SU(2) gauge field, provided that hi
m is transformed on its tetrad

indices as a gauge potential, rather than as a Lorentz vector. If hi
m is trans-

formed as a gauge potential, the metric g m n 5 gij h
i
m h j

n is generally changed.

It is eminently reasonable that when a particle is subjected to a gauge

transformation which changes its mass, the gravitational field should change.

From equation (14), we see that in expression (13), for M m n i the curl
fn a s may simply be replaced by the gauge field Fn a s . We shall see that the

quantity Fi m n does not directly describe the electroweak field. It is, however,

the fundamental ingredient which is essential for the description of that field.

The Fn a s in equation (14) may be viewed as a field with ª bareº or massless

quanta which are ª clothedº by the factor 1/3 (2 d n
i d a

m d s
n 2 hn

m d a
n h s

i 2
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hn
n h a

i d s
m ) and thus may acquire mass. It is M m n i that we identify as the physical

electroweak field, and which (as we shall see in Sections 4 and 5) appears

in the appropriate way in our Lagrangian and in the stress-energy tensor of

the Einstein equations. For this identification to be valid, the quantity M m n 0

5 1/3 (2f0 m n 2 f m n 0 2 f n 0 m ) must describe the electromagnetic field; hence,

it must be the curl of a vector. The presence of the terms 2 f m n 0 2 f n 0 m may
cause one to ask how M m n i can be identified as the electroweak field. Our

answer is this: The orthodox physical interpretation, which we adopt, is that

hi
m describes an observer frame. Now, if hi

m describes a freely falling, nonrotat-
ing observer frame, our expression for M m n 0 reduces to M m n 0 5 1/3 f0 m n . This

may be seen as follows. The condition for a freely falling, nonrotating frame
(Synge, 1960) is hi n ; a h a

0 5 0. In terms of the Ricci rotation coefficients, the

condition is g m n 0 5 0. From this and equation (11), we see that for an hi
m

which describes a freely falling, nonrotating observer frame,

M m n 0 5
1

3
( g 0 n m 2 g 0 m n ) 5

1

3
(h 0; m n 2 h0 m ; n ) 5

1

3
(h0 n , m 2 h0 m , n ) 5

1

3
f0 m n

Moreover, in the nonrelativistic limit (i.e., for v1, v 2, v 2 small compared to

one), the electromagnetic term (dx m /ds) M m
a

0v
0 dominates the right side of

equation (9).

3. MATHEMATICAL PRELIMINARIES

Any ordered set of four independent real variables x a may be regarded

as coordinates of points in a four-dimensional arithmetic space X.

3.1. Path-Dependent Functionals

3.1.1. Paths

Let x a ( l ) be continuous functions of a real parameter l on the interval

2 ` , l , ` . By a path p, we mean the set of all points in X that are

identified by x a 5 x a ( l ) for 2 ` , l # L . Thus, one endpoint of a path

p is the point i with coordinates lim
l ® 2 `

x a ( l ), while the other endpoint is the

point x with coordinates x a ( L ). We regard i as the initial point, and x as the

terminus, of p. The set of all paths p is regarded as a space of paths and is

denoted by P.

3.1.2. Path-Dependent Functionals and Their Derivatives

Let F be a path-dependent functional, i.e., a rule that assigns to each

path p a real number F( p). Following the method introduced by us (Pandres,
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1962) and independently by Mandelstam (1962), we define derivatives of

F( p) by giving p an extension from its terminus x, while holding the rest of

p completely fixed. Any path may be extended in this way by extending the
domain of x a ( l ) to the interval 2 ` , l # L 1 D L , where D L . 0. The

resulting path p 1 D p is called a path extended from p, and the set of all

points in X that are defined by x a 5 x a ( l ) for L , l # L 1 D L is called

an extension of p and is denoted by D p. If, for each path p and each extension

D p, the condition lim
D L ® 0

[F( p 1 D p) 2 F( p)] 5 0 is satisfied, we call F a

normal functional. We limit our considerations to normal functionals. We

define F 8 by

F 8 5 lim
D L ® 0

F( p 1 D p) 2 F( p)

D L

If the extension D p is chosen so that, along it, only a single coordinate x b

changes, and if the parametrization is such that on this extension D L 5 D x b ,
then F 8 is called the partial derivative of F with respect to x b , and denoted

by - b F or by F,b . If, along D p, the coordinate increments D x b are unrestricted

and independent, then F 8 is called the total derivative of F with respect to

L , and is denoted by dF/d L . It is also convenient to denote dx a /d l , evaluated

for l 5 L , by dx a /d L . If the partial derivatives and the total derivative of
F are related in such a way that the chain rule for differentiation is valid,

i.e., if dF /d L 5 F, a dx a /d L , then F is called a smooth functional. A smooth

functional whose partial derivatives of all orders are also smooth is called a

regular functional. We limit our considerations to regular functionals. When

we wish to emphasize the path-dependent character of a functional F, we

use the notation F( p). Our functionals include, as a subclass, the ordinary
functions of x, i.e., functionals which are ª path-dependentº in the trivial sense

that they depend only on the terminus x of a path p; for them, we use the

notation F(x).

3.1.3. Noncommutativity of Partial Derivatives

From the path p, let two extended paths p 1 D p1 and p 1 D p2 be

constructed such that the extensions D p1 and D p2 do not coincide, but such

that the termini of p 1 D p1 and p 1 D p2 do coincide. The values of F( p 1
D p1) and F( p 1 D p2) are not generally equal. By letting D p1 be an extension
along which first only x n changes and then only x m changes, and letting D p2

be an extension along which first only x m changes and then only x n changes,

we see that - m - n F equals - n - m F for functions F(x), but not generally for

functionals F( p).
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3.2. Path Space

3.2.1. The Requirement That No Preferred Coordinate System Shall Exist

From the chain rule, we have F, n 5 F, s Ä x
s Ä
, n . If we differentiate with respect

to x m and subtract the corresponding expression with m and n interchanged,

we get [ - m ,- n ] F 5 x r Ä
, m x s Ä

, n [ - r Ä , - s Ä ] F 1 F, s Ä [ - m , - n ] x s Ä . Consider a transforma-

tion for which [ - m , - n ] x s Ä does not vanish. If we were to demand that [ - m , - n ]

F vanish, then we would find that [ - r Ä , - s Ä ] F does not generally vanish. Thus, the

coordinates x a and x a Ä would not be on an equal footing; i.e., the coordinates x a

would be ª preferred.º The requirement that x a and x a Ä be on an equal footing

compels us to consider a space in which paths, rather than points, are the

primary elements.

3.2.2. Abstract Path Space

Just as the x a are regarded as coordinates of points x in the arithmetic

space X and the set of all paths p is regarded as a space of paths P, another
ordered set of four independent real variables x a Ä may be regarded as coordi-

nates of points xÄ in another four-dimensional arithmetic space XÄ , and the set

of all paths pÄ may be regarded as another space of paths PÄ . Let M be a one-
to-one mapping from P onto PÄ ; let pÄ be the image path of p, and let xÄ be

the terminus of pÄ . Since xÄ is determined by pÄ , and pÄ is determined by p (via

the mapping M ), it is clear that the coordinates x a Ä are functionals of p, i.e.,

x a Ä 5 x a Ä ( p ). Similarly, x a 5 x a ( pÄ ). If the image path of each path extended

from p is a path extended from pÄ , and if x a Ä ( p) and x a ( pÄ ) are regular function-

als, then M is called a regular mapping. We limit our considerations to
regular mappings.

We began by regarding a mapping M as a path transformation (which

maps each path p in P to a path pÄ in PÄ and conversely). There is, however,

another point of view that is more interesting and useful, and that we now

adopt: We introduce an abstract path space P in which (abstract) paths p
are the primary elements, and regard M as a path-dependent coordinate
transformation x a Ä 5 x a Ä ( p) that merely changes the arithmetic-space frame-

work for discussing P . The arithmetic spaces X and XÄ provide equivalent

frameworks for discussing P , and the path spaces P and PÄ are equivalent

representations of P . A path p and its image path pÄ are equivalent representa-

tions of the same abstract path p in P . The changed point of view that we

have adopted is analogous to that in which one begins by regarding a suitable
transformation x a Ä 5 x a Ä (x) as a mapping from a point x to a point xÄ , and then

recognizes that it is more interesting and useful to regard the transformation

as a diffeomorphism, in which the same point of an abstract point space (a

manifold) is merely relabeled with new coordinate values. The coordinates
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x a and x a Ä provide equivalent coordinate systems for discussing P , but the

points x and xÄ that x a and x a Ä identify in X and XÄ , respectively, have no meaning

in P . This is clear, because a path-dependent coordinate transformation does
not generally establish a one-to-one correspondence between points of X and

XÄ , even in coordinate patches. Two paths which have the same termini in X
have image paths with different termini in XÄ , and conversely. The correspon-

dence between x and xÄ is both one-to-many and many-to-one (hence, non-

unique in both directions).

We suggest that physical space is described by our path space P . Skepti-
cism that a Riemannian manifold adequately describes physical space has

been expressed by many investigators (e.g., Eddington, 1924; Penrose, 1968;

Penrose and MacCallum, 1973; Finkelstein, 1969, 1972a,b, 1974; Finkelstein

et al., 1974; Bergmann and Komar, 1972; Gambrini and Trias, 1981). The

following comments of Eddington (1924) most nearly anticipate our approach:

There is a certain hiatus in the arguments of the relativity theory which has never

been thoroughly explored. . . . the arbitrariness of the coordinate-syste m is limited.

We may apply any continuous transformation; but our theory does not contemplate

a discontinuous transformation of coordinates, such as would correspond to a re-

shuffling of the points of the continuum. There is something corresponding to

an order of enumeration of the points which we desire to preserve, when we

limit the changes of coordinates to continuous transformations. . . . The hiatus

probably indicates something more than a temporary weakness of the rigorous

deduction. It means that space and time are only approximate conceptions, which

must ultimately give way to a more general conception of the ordering of events

in nature . . . .

3.3. The Conservation Group and the Curvature Vector

A relativistic conservation law is an expression of the form V a
, a 5 0,

where V a is a vector density of weight 1 1. This is a covariant statement

under a path-dependent coordinate transformation relating x a and x a Ä if and
only if it implies and is implied by the relation V a Ä

, a Ä 5 0. The transformation

law for a vector density of weight 1 1 is V a Ä 5 ( - x /xÄ ) x a Ä
, m V m , where - x/xÄ is

the (nonzero) Jacobian determinant of x m
, a Ä . Upon differentiating V a Ä with

respect to x a Ä , we obtain

V a Ä
, a Ä 5 1 - x

- xÄ
x a Ä

, m 2 , a Ä

V m 1
- x

- xÄ
V a

, a

For arbitrary V m , we see that a conservation law is a covariant statement if

and only if
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1 - x

- xÄ
x a Ä

, m 2 , a Ä

5 0 (16)

For this reason, we call a path-dependent coordinate transformation con-
servative if it satisfies equation (16). Now,

1 - x

- xÄ
x a Ä

, m 2 , a Ä

5 1 - x

- xÄ 2 , a x a Ä
, m 1

- x

- xÄ
x a Ä

, m , a Ä 5 - m
- x

- xÄ
1

- x

- xÄ
x a Ä

, m , n x n
, a Ä

so, if we use the well-known formula

- m
- x

- xÄ
5

- x

- xÄ
x a Ä

, n - m x n
, a Ä

for the derivative of a determinant, and note that x a Ä
, n x n

, a Ä , m 5 2 x a Ä
, n , m x n

, a Ä , we

find that equation (16) is equivalent to our equation (2), i.e.,

x n
, a Ä [ - m , - n ] x a Ä 5 0

3.3.1. The Conservation Group

We now recall (Pandres, 1981) an explicit proof that the conservative

coordinate transformations form a group. [Finkelstein (1981), however,

pointed out that the group property follows implicitly from the derivation

given above.] First, we note that the identity transformation x a Ä 5 x a is a

conservative coordinate transformation. Next, we consider the result of fol-
lowing a coordinate transformation from x a to x a Ä by a coordinate transforma-

tion from x a Ä to x a Ã. Upon differentiating

x a Ã
, m 5 x a Ã

, r Ä x
r Ä
, m (17)

with respect to x n , subtracting the corresponding expression with m and n
interchanged, and multiplying by x n

, a Ã, we obtain

x n
, a Ã[ - m , - n ] x a Ã 5 x r Ä

, m x s Ä
, a Ã[ - r Ä , - s Ä ] x a Ã 1 x n

, r Ä [ - m , - n ] x r Ä (18)

We see from equation (18) that if x n
, r Ä [ - m , - n ] x r Ä and x s Ä ,

a Ã [ - r Ä , - s Ä ] x a Ãvanish,

then x n
, a Ã[ - m , - n ] x a Ãvanishes. This shows that if the transformations from x a

to x a Ä and from x a Ä to x a Ã are conservative coordinate transformations, then

the product transformation from x a to x a Ãis a conservative coordinate transfor-

mation. If we let x a Ã 5 x a , we see from equation (18) that the inverse of a
conservative coordinate transformation is a conservative coordinate transfor-

mation. From equation (17), we see that the product of matrices x r Ä
, m and

x a Ã
, r Ä (which represent the transformations from x a to x a Ä and from x a Ä to x a Ã,

respectively) equals the matrix x a Ã
, m (which represents the product transforma-
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tion from x a to x a Ã). It is obvious, and well known, that if products admit a

matrix representation in this sense, then the associative law is satisfied. This

completes the proof that the conservative coordinate transformations form a
group, which we call the conservation group.

To show that the conservation group contains the diffeomorphisms as

a proper subgroup, we need only exhibit a coordinate transformation that

satisfies equation (2), but does not satisfy equation (1). Such a coordinate

transformation is

x a Ä 5 x a 1 d a
0 #

x

i

x1dx 2 (19)

where the integral from i to x is taken along the path p. We see by inspection

that the inverse of the transformation defined in equation (19) is

x n 5 x n Ä 2 d n
0 #

xÄ

iÄ

x1Ä dx 2Ä (20)

where the integral from iÄ to xÄ is taken along the path pÄ . Upon differentiating
equation (19) with respect to x n , we obtain x a Ä

, n 5 d a
n 1 d a

0 d 2
n x1. By differentiat-

ing this with respect to x m and subtracting the corresponding expression with

m and n interchanged, we obtain

[ - m , - n ] x a Ä 5 d a
0 ( d 1

m d 2
n 2 d 1

n d 2
m ) (21)

A nonzero component of equation (21) is [ - 1, - 2] x0Ä 5 1, which shows that

equation (1) is not satisfied. Upon differentiating equation (20) with respect

to x a Ä , we obtain x n
, a Ä 5 d n

a 2 d n
0 d 2

a x1Ä . If we multiply equation (21) by this, we

see that equation (2) is satisfied.

3.3.2. The Curvature Vector

The geometry determined on a manifold by the diffeomorphisms is

Riemannian geometry, whose structure is expressed by a symmetric metric
g m n . From g m n and its derivatives, one defines an object R a

b m n which is a

tensor under the diffeomorphi sms, and which is called the Riemann tensor.

There exists a diffeomorphism from x a to a coordinate system in which the

metric is constant, if and only if R a
b m n vanishes.

We now consider the geometry which is determined on path space, in

an analogous way, by the conservation group. [We would say ª determined
by the conservation group in the sense of Klein’ s (1893) Erlanger Program,º

but this could cause some confusion. Roughly speaking, Klein’ s program

states that a group of transformations on a space determines a geometry on the

space, and conversely; however, mathematicians appear to differ somewhat
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concerning the precise modern interpretation of Klein’ s program. See, e.g,

Weyl (1931) and Millman (1977). ]

The structure of path space is expressed by a tetrad hi
m . [Note: Tetrads

were used in physics by Einstein (1928a,B) under the name ª vierbein.º The

mathematical properties of tetrads were made available to physicists soon

afterward in two lucid papers by WeitzenboÈ ck (1928) and Levi-Civita (1929).

A large literature has since developed. For example, Rosenfeld (1930) sug-

gested that tetrads present certain advantages for the formulation of a quantum

field theory of gravitation (in the very first paper on that subject). Utiyama
(1956) and Kibble (1961) used tetrads in conjunction with attempts at under-

standing gravitation as a compensating field in the sense of Yang and Mills

(1954). The Petrov (1969) classification of the Weyl tensor was originally

developed using tetrads (though a development using spinors is easier to

understand). MoÈ ller (1961) used tetrads in a revival of Einstein’ s theory of

distant parallelism. A nice summary of the tetrad literature has been given
by De Felice and Clarke (1990). ]

Under a coordinate transformation, the tetrad transforms as a vector, i.e.,

hi
m 5 hi

a Ä x a Ä
, m (22)

We define an object C m , which we call the curvature vector, by

C m 5 h n
i (h i

m , n 2 hi
n , m ) (23)

Now, equation (23) may be written C m 5 2 hi n fi m n . By using equation (15),

we verify that this may be rewritten into the form C m 5 2 hi n Fi m n . It is

important to notice that in the expression for C m , just as in the expression

for M m n i, the curl fi m n may simply be replaced by the gauge field Fi m n .
Upon differentiating equation (22) with respect to x n , subtracting the

corresponding expression with m and n interchanged, and multiplying by

h n
i we obtain

C m 5 C a Ä x
a Ä
, m 2 x n

, a Ä [ - m , - n ] x a Ä (24)

where C m Ä 5 h n Ä
i (hi

m Ä , n Ä 2 hi
n Ä , m Ä ). Equation (24) shows that C m is a vector under

the conservation group. Now, any two tetrads hi
m and hi

m Ä are related by a

path-dependent coordinate transformation (not necessarily conservative). The

relation is x a Ä
, m 5 h a Ä

i hi
m . If hi

m Ä is constant, then C m Ä vanishes. Thus, we see

from equation (24) that there exists a conservative coordinate transformation
to a coordinate system in which the tetrad is constant, if and only if the
curvature vector vanishes.

Upon multiplying equation (24) by h m
i , we obtain

Ci 5 CÄ i 2 h
m
i x n ,

a Ä [ - m , - n ] x a Ä

where Ci 5 C m h
m
i and CÄ i 5 C m Ä h

m Ä
i . It is clear from this that two tetrads are
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related by a conservative coordinate transformation if and only if they yield
curvature vectors whose Latin components are identical.

4. THE LAGRANGIAN

The quantity C m C m is the only invariant that can be formed from the

curvature vector by contraction with the metric. We now present evidence

that this invariant is an appropriate Lagrangian for gravitational and electro-

weak unification.

The Riemann tensor is defined in the usual way by

R a
b m n 5 h a

i (hi
b ; m ; n 2 hi

b ; n ; m )

while the Ricci tensor R m n and Ricci scalar R are defined, as usual, by

R m n 5 R a
m a n and R 5 R a

a . By using

h a
i hi

b ; m ; n 5 (h a
i hi

b ; m ); n 2 h a
i; n hi

b ; m 5 g a
b m ; n 1 g a

s n g s
b m

we easily find that

R a
b m n 5 g a

b m ; n 2 g a
b n ; m 1 g a

s n g s
b m 2 g a

s m g s
b n (25)

From equation (23), we see that

C m 5 h n
i (hi

m , n 2 hi
n , m ) 5 h n

i (hi
m n 2 hi

n ; m ) 5 g n
m n 2 g n

n m 5 g n
m n

By using C m 5 g n
m n , we find from equation (25) that

R m n 5 C m ; n 2 C a g a
m n 2 g a

m n ; a 1 g a
s n g s

m a (26)

and from equation (26)

C m C m 5 R 1 g m i n g m n i 2 2C m
; m (27)

The first term on the right side of equation (27) is the Ricci scalar, which is

the Lagrangian for gravitation. The last term is a covariant divergence, which

contributes nothing to the field equations. We now consider the interpretation

of the term g m i n g m n i. From equations (10) and (11), we see that

A m n iM m n i 5 0 (28)

and that

M m n i 1 Mi m n 1 M n i m 5 0 (29)

From g m n i 5 M m n i 1 A m n i and equation (28), we get g m i n g m n i 5 M m i n

M m n i 2 A m n i A m n i. But, M m i n M m n i 5 1/2 M m i n M m n i 1 1/2 M n i m M n m i 5 1/2

M m i n M m n i 1 1/2 Mi n m M m n i 5 1/2 (M m i n 1 M i n m ) M m n i 5 1/2 M m n i M m n i, where
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we have used equation (29). Thus, we have g m i n g m n i 5 1/2 M m n i M m n i 2
A m n a A m n a . We now define a vector

A m 5
1

3!
( 2 g) 2 1/2 e m a b s A a b s (30)

and find that

A m n a A m n a 5 2 6A m A m (31)

In obtaining equation (31), we have used the well-known identity (see, e.g.,

Weber, 1961) for expressing the product of two Levi-Civita symbols as
a determinant of Kronecker deltas. We now see that equation (27) may

be written

C m C m 5 R 1
1

2
M m n i M m n i 1 6A m A m 2 2C m

; m (32)

The term M m n i M m n i is the electroweak Lagrangian, and the A m A m term has
precisely the form that is needed (see, e.g., Moriyasu, 1983) for the introduc-

tion of mass.

5. FIELD EQUATIONS

We have previously (Pandres, 1981) considered the variational principle

d * C m C m ! 2 g d 4x 5 0 where hi
m is varied. We note that ! 2 g equals h,

the determinant of hi
m , and that C m C m 5 C i Ci. Hence, our variational

principle may be written

d # C i Ci h d 4 x 5 0 (33)

The variational calculation (Pandres, 1984a) using C iCi is less tedious than
that using C m C m . We find from equation (33) that

# h(2C i d Ci 2 C iCi h
k
n d h n

k) d 4x 5 0 (34)

where we have used d h 5 hh n
k d hk

n 5 2 hhk
n d h n

k. We note that

(hh n
i ), n 5 h, n h n

i 1 hh n
i,n 5 h (h

m
k hk

m , n h n
i 1 h n

k, n hk
m h m

i )

5 h (h n
k hk

n , m h
m
i 2 h n

k hk
m , n h

m
i ) 5 2 hC m h m

i 5 2 hCi

Thus, we see that

Ci 5 2 h 2 1 (hh n
i ), n (35)
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Variation of equation (35) gives

d Ci 5 h 2 2 (hh n
i ), n d h 2 h 2 1 d (hh n

i ), n 5 Ci hk
n d h n

k 2 h 2 1 [ d (hh n
i )] , n

Upon using this expression for d Ci in equation (34), we obtain

# hC k Ckh
i
n d h n

i d 4x 2 2 # C i[ d (hh n
i ), n d 4x 5 0 (36)

and integration by parts gives

# h(C i
, n 2 hi

n C k
, k 1

1

2
hi

n C
kCk) d h n

i d 4x 2 # [C i d (hh n
i )] , n d 4x 5 0 (37)

By using Gauss’ theorem, we may write the second integral of equation (37)
as an integral over the boundary of the region of integration. We discard this

boundary integral by demanding that C i d (hh n
i ) shall vanish on the boundary,

and demand that d h n
i be arbitrary in the interior of the (arbitrary) region of

integration. We get field equations C i
, n 2 hi

n C k
,k 1 1/2 hi

n C k Ck 5 0, and,

upon multiplying by h n
j , we write these field equations as

C i
, j 2 d i

j Ck
,k 1

1

2
d i

j CkCk 5 0 (38)

5.1. The Field Equations as Einstein Equation

We note that

C a
; s 5 (C kh a

k ); s 5 C k
, s h a

k 1 C kh a
k; s 5 C k

, s h a
k 1 C k g a

k s

Thus, we have C k
; s h a

k 5 C a
; s 1 C r g a

r s . If we multiply by hi
a h s

j , we obtain
C i

, j 5 hi
a h s

j (C a
; s 1 C r g a

r s ) and C k
,k 5 C a

; a 1 C a C a . Using these expres-

sions for C i
, j and C k

,k in equation (38), we get the relation

hi
a h s

j (C a
; s 1 C r g a

r s ) 2 d i
j C a

; a 2
1

2
d i

j C a C a 5 0

and, upon multiplying this by hi m h j
n , we rewrite our field equations as

C m ; n 2 C a g a
m n 2 g m n C a

; a 2
1

2
g m n C a C a 5 0 (39)
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From equations (26) and (27), we find that an identity for the Einstein tensor

G m n 5 R m n 2 1/2 g m n R is

G m n 5 C m ; n 2 C a g a
m n 2 g m n C a

; a 2
1

2
g m n C a C a (40)

1 g m
a

n ; a 1 g a
s n g s

m a 1
1

2
g m n g a i s g a s i

Equation (39) just states that the first line on the right side of equation (40)

vanishes. Thus, we may write our field equations as

G m n 5 g m
a

n ; a 1 g a
s n g s

m a 1
1

2
g m n g a i s g a s i (41)

We now show that the set of tetrads hi
a which satisfy these field equations

contains a nondenumerably infinite proper subset for which the condition

[ - m , - n ]hi
a 5 0 is satisfied, i.e., for which hi

a is path-independent. Only after

we have shown this can we write equation (41) in a form that makes its

physical interpretation more evident.

5.2. Path-Independent Solutions of the Field Equations

5.2.1. First Integral of the Field Equations

Suppose that the tetrad hi
m satisfies our field equations. For distinct

values of i and j, equation (38) becomes Ci
, j 5 0. Thus, we see that the

component C i can depend only on the single coordinate x i. The trace of
equation (38) is 3C k

,k 2 2C kCk 5 0. Upon using this to eliminate C k
,k from

equation (38), we obtain

C i
, j 5

1

6
d i

jC
kCk (42)

If we set i and j equal to the same value N (no summation on N ), we get
C N

,N 5 1/6 C kCk. It follows from this that C 0
,0 5 C 1

,1 5 C 2
,2 5 C 3

,3. But C 0
,0

can depend only on x 0; C1
,1 only on x1; etc. Thus, it is clear that C N

,N is a

constant (same constant for all N ); hence C kCk is a constant. The constancy

of C kCk allows us to integrate equation (42). This integration gives Ci 5
1/6 C kCk x i 1 B i, where Bi 5 const. By using this expression for C i, we

obtain C kCk 5 gij (1/6 C mCm x i 1 B i) (1/6 C kCk x j 1 Bj). If we differentiate
with respect to x n, we obtain C mCm (C kCk x n 1 6Bn) 5 0. Now, if

C kCk x n 1 6Bn 5 0, the constancy of C kCk and Bn implies that C kCk vanishes.

Thus, Ci must either vanish or be lightlike. In either case, we see from

equation (42) that C i
, j 5 0; hence, C i must be constant. Our conclusion
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(Pandres, 1984a) is that a tetrad satisfies our field equations if and only if
it yields a curvature vector whose Latin components Ci vanish or are constant
and lightlike.

5.2.2. Path-Independent Tetrads Which Yield Ci 5 0

Consider the tetrad hi
m 5 d i

m 1 d i
0 d 2

m x1, where x1 is a Greek (space-time)

coordinate. We have shown (Pandres, 1981) that this tetrad yields Ci 5 0

and gives a Ricci scalar R 5 1/2. By contrast, the tetrad hi
m Ä 5 d i

m Ä yields

CÄ i 5 0, but gives a Ricci scalar that vanishes. Thus, it is clear that two path-

independent tetrads which satisfy our field equations and yield curvature
vectors with identical Latin components are not generally related by a

diffeomorphism.

We now recall (Pandres, 1995) that the set of tetrads which yield Ci 5
0 contains a nondenumerably infinite subset of path-independent tetrads; i.e.,

tetrads which satisfy [ - m , - n ]hi
a 5 0. Let H m n

i be four antisymmetric tensor

densities of weight 1 1. The only conditions on the H m n
i are as follows:

1. They are path-independent functions, i.e., H m n
i 5 H m n

i (x).

2. The vector densities of weight 1 1 defined by H m
i 5 H m n

i, n are lin-

early independent.

From Condition 1, it follows that [ - a , - b ]H m n
i 5 0. From Condition 2,

it follows that H, the determinant of H m
i , is nonzero. This determinant is

H 5 1/4! e a s m n H a
i H s

j H m
m H n

n eijmn. Since e a s m n is a tensor density of weight

2 1, it is clear that H is a scalar density of weight 1 3. Thus, H 2 1/3 is a scalar

density of weight 2 1, so that H 2 1/3H m
i is a vector, i.e., it has weight zero.

We define h m
i by

h m
i 5 H 2 1/3 H m

i (43)

We note that h 5 Det hi
m 5 (Det h m

i ) 2 1 5 {Det [H 2 1/3H m
i ]} 2 1 5

[H 2 4/3H ] 2 1 5 H1/3. From this and equation (43), we see that hh m
i 5 H m

i .

Thus, we find that (h h m
i ), m 5 H m

i, m 5 H m n
i, n , m 5 1/2 (H m n

i, n , m 1 H m n
i, n , m ) 5

1/2 (H m n
i, n , m 1 H n m

i, m , n ) 5 1/2 (H m n
i, n , m 2 H m n

i, m , n ) 5 1/2 [ - m , - n ] H m n
i 5 0. Since

(hh m
i ), m 5 0, we see from equation (35) that Ci 5 0.

5.2.3. Path-Independent Tetrads Which Yield Ci Constant and Lightlike

Consider the tetrad hi
m 5 d i

m 1 ( d i
0 1 d i

1) d 0
m (e x1

2 1), where the coordi-
nate x1 is Greek. We have shown (Pandres, 1984a) that this tetrad yields a

nonvanishing but constant and lightlike Ci.

We have not yet found an explicit expression, like equation (43), for a

nondenumerably infinite set of path-independent tetrads which yield a given
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constant lightlike value of Ci. It is clear, however, that such a set exists.

Suppose, for example, that Ci 5 d 0
i 1 d 1

i . Then, hi
m must satisfy the differential

equations h 2 1 (hh m
i ), m 5 2 ( d 0

i 1 d 1
i ). These equations comprise only four

conditions on the 16 fields hi
m .

5.2.4. Nontrivial Solutions That Yield Flat Riemann Space-times

We note that our field equations admit nontrivial solutions for which

g m n is the metric of a flat space-time. Green (1991) exhibited the tetrad

h
m
i 5 d m

0 d 0
i 1 d m

3 d 3
i 1 ( d m

1 d 1
i 1 d m

2 d 2
i ) cos x 3 1 ( d m

2 d 1
i 2 d m

1 d 2
i ) sin x 3 (44)

where the coordinate x 3 is Greek. For this h m
i , the quantity M m n i does not

vanish, but Ci 5 0, and g m n 5 diag( 2 1, 1, 1, 1). He also exhibited (Green,

1997) the tetrad

h
m
i 5

1

2 F ( d
m
0 d 0

i 1 d
m
1 d 1

i ) 1 F 1
1

F 2 G
1

1

2 F ( d m
0 d 1

i 1 d m
1 d 0

i ) 1 F 2
1

F 2 G 1 d m
2 d 2

i 1 d m
3 d 3

i (45)

where F 5 x 0 1 x 1, and the coordinates x 0 and x 1 are Greek. For this h
m
i ,

the quantity M m n i does not vanish, but Ci is constant and lightlike, and
g m n 5 diag ( 2 1, 1, 1, 1).

5.3. Einstein Equations Revisited

In Section 5.2 we saw seen that the set of tetrads hi
a which satisfy our

field equations contains a nondenumerably infinite proper subset of path-

independent tetrads. Any hi
a in this subset appears in the guise of a tetrad

defined on a manifold. In the remainder of this paper, we limit our considera-

tions to such path-independent tetrads. Since hi
m is path independent, the

metric g m n 5 gij h
i
m h j

n and all of its derivatives are path independent.

We may now use the well-known symmetry of the Einstein tensor, i.e.,
G m n 5 G n m . (In the usual proof of this symmetry, it is assumed that g m n is

path independent.) Thus, we see from equation (41) that the symmetric part

of our field equations is

G m n 5
1

2
( g m

a
n 1 g n a

m ); a 1
1

2
( g a

s n g s
m a 1 g a

s m g s
n a )

1
1

2
g m n g a i s g a s i (46)
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Since g m
a

n 5 M m
a

n 1 A m
a

n , we see that

( g m
a

n 1 g n
a

m );) a 5 (M m
a

n 1 M n
a

m ); a 5 (M m
a

ih
i
n 1 M n

a
ih

i
m ); a

5 J m i h
i
n 1 J n i h

i
m 1 M m

a
s g s

n a 1 M n
a

s g s
m a

where J m i 5 M m
a

i; a is a (conserved) electroweak current. From equation (28),

the repeated use of equation (29), the total antisymmetry of A m n a , and the

antisymmetries of g m n a and M m n a in their first two indices, we find after a

tedious but straightforward calculation that equation (46) may be written

G m n 5 Aij
m Aij n 2

1

2
g m n A ij a Aij a 1

1

2
(J m i h

i
n 1 J n i h

i
m ) 2 M m n (47)

where M m n 5 M a
m i M a n

i 2
1

4
g m n M a s iM a s i. The terms in equation (47) that

involve A ij m may be written in a simpler form. From equation (30), we have
A m 5 (1/3!)( 2 g) 2 1/2 g m r e

r a b s A a b s , and we find after a little work that A m 5

2 (1/3!)( 2 g)1/2e m a b s A a b s . Thus, A m A n 5 2
1

36
g m r e

r a b s e n u l t A u l t A a b s . By

expressing the product of Levi-Civita symbols as a determinant of Kronecker

deltas, we get A m A n 5
1

2
Aij

m A ij n 2
1

6
g m n Aij a A ij a . From this and equation (31),

we see that equation (47) may be written

G m n 5 2A m A n 1 g m n A a A a 1
1

2
(J m i h

i
n 1 J n i h

i
m ) 2 M m n (48)

The right side of equation (48) is just what one would expect for the stress-

energy tensor of the electroweak field, its associated currents, and gauge

symmetry-breaking terms corresponding to those in the Lagrangian of equa-

tion (32).

6. AN ALTERNATIVE THEORY

SchroÈ dinger (1960) recognized that the simplest general relativistic vari-

ational principle which exists is

d # ! 2 g d 4x 5 0 (49)

where g is the determinant of the metric g m n . He noted, however, that variation

of g m n yields the Euler±Lagrange equations ! 2 gg m n 5 0, which cannot serve

as field equations. If one expresses g m n in terms of the tetrad and varies the
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16 components of hi
m independently, one gets the Euler±Lagrange equations

! 2 gh m
i 5 0, which also cannot serve as field equations. We have considered

(Pandres, 1995, 1998) a theory in which the vectors of the tetrad hi
m are

expressed as derivatives of ª nonintegrable functionsº x i and the four x i are

varied independently. [A nonintegrable function does not have a definite

numerical value at a point, but its derivatives have definite values at a

point. Such nonintegrable functions (path-dependent functions with path-

independent derivatives) have been used as phase factors by Dirac (1978),

Yang (1974), and many others in gauge theory.] Any path-independent tetrad
may be expressed in this way; thus, without loss of generality, we may write

hi
m 5 xi

, m , where a comma denotes partial differentiation. Since ! 2 g equals

J, the (Jacobian) determinant of x i
, m , our variational principle may be written

d # J d 4x 5 0 (50)

Clearly, this may be viewed as a ª principle of stationary space-time volume.º

6.1. Field Equations

By using the formula for the derivative of a determinant, we have

d J 5 J h
m
i d hi

m , and since d hi
m 5 d (x i

, m ) 5 ( d x i), m , equation (50) may be

written * J h m
i ( d x i), m d 4x 5 0. Upon integrating by parts, we have

* (J h m
i d x i), m d 4x 2 * (J h

m
i ), m d x i d 4x 5 0. By using Gauss’ theorem, we

write * (J h
m
i d xi), m d 4x as a boundary integral which we discard by demanding

that d x i vanish on the boundary. Thus, we obtain * (J h
m
i ), m d x i d 4x 5 0 , and

by demanding that d x i be arbitrary in the interior of the region of integration,

we obtain the field equations (J h m
i ), m 5 0. Now,

(Jh a
j ), a 5 J h a

j,a 1 h a
j J, a

5 Jh a
j, n d n

a 1 h a
j Jh n

i h
i
n , a

5 Jh a
j, n hi

a h n
i 1 Jh a

j h n
i hi

n , a

5 2 Jh a
j hi

a , n h
n
i 1 Jh a

j h n
i h

i
n , a

5 Jh a
j h n

i (hi
n , a 2 hi

a , n )

Upon multiplying this by h j
m , we see that our field equations may be written

C m 5 0, where C m is the curvature vector defined in equation (23). Thus,

we see that any tetrad which satisfies the field equations of our alternative

theory also satisfies the field equations of the theory developed in Sections

1±5; however, the converse is not true.
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